
Quartermaster: Grid Services for Data Center Resource
Reservation

Jim Pruyne and Vijay Machiraju

{jim.pruyne, vijay.machiraju}@hp.com
Hewlett-Packard Laboratories

1. Introduction
For many people, the term “grid” is synonymous with resource allocation and program execution. While it can
easily be argued that this definition has never been accurate, the advent of the grid services paradigm has certainly
expanded the scope of the term grid well beyond these boundaries. Nonetheless, resource allocation continues to be
an important aspect of grid computing, and is what attracts many user communities. This has been increasingly the
case with enterprise or application service provider (ASP) data center operators. They view the grid as a way of
automating the management of their resources. Their desire is that grid enabling their environment will lead to
increased utilization of assets and provide flexibility and efficiency in deployment while decreasing the cost of
operation.

Grid services provide an attractive foundation for building the services required by data center operators. They
build on web services technology which is often already found in these environments, support a dynamic
environment as found in active data centers, and support decentralized identity management and authentication.
This latter trait is increasingly important as data centers are consolidated. What were previously geographically and
organizationally distributed resources are more and more being centralized into fewer locations and a small number
of administrative domains. The grid’s authentication mechanisms allow the operators to securely provide access to
these centralized resources to remote users who may previously have maintained their own dedicated resources at a
departmental or site-specific granularity.

Unfortunately, while the foundation exists, services that fully support the needs of data center operators do not exist
yet. Commonly, resource management systems connected to today’s grid are designed to support scientific
workloads operating in a job submission or batch mode. A data center has requirements that are not met fully by
such resource management systems. These requirements include:

• Support for diverse resources and complex topologies: Data centers contain a variety of resource types such
as compute servers, large network attached storage arrays, and networking appliances such as routers,
firewalls and load balancers. Each of these resource types has diverse characteristics and performance
criteria, and must be cataloged and apportioned accordingly. Further, these resources may be
interconnected in complex topologies for reasons of performance, reliability or security, which may be
dependent upon the requirements of the applications running in the environment.

• Support for diverse application workload characteristics: The applications running in a data center, such as
web or e-mail servers, have different demands than those usually found in a scientific domain. Their run-
times are measured in weeks, months, or even years as compared to hours, days or perhaps weeks that
typically characterize scientific codes. Further, during their lifetime, their resource demands fluctuate.
This is often due to a predictable pattern in utilization either on a periodic (for example, an end-of-month
spike in demand for payroll processing) or measurable long-term trend (such as an observed 5% per month
increase in e-mail storage). Certain events, such as an e-mail virus may also cause an unpredictable, short-
term need for increased resources. In all these cases, we must be able to change the quantity of resource
allocated to an application while it runs. These applications also need guarantees, or reservations, to insure
that they will be started on time.

• Security, identity management and isolation: As with any shared resource environment, data centers have
strong requirements on security and isolation among their users. In consolidation cases, these concerns are
often critical when convincing users to give up local ownership of resources and move into a centralized
environment. The data center operators have their own concerns in these areas, particularly the ability to

securely shift resources from one user to another without exposing the identity of one user to another or
allowing any residual state, such as disk storage blocks, to be seen by the new user.

The Quartermaster research project at HP Labs is developing a resource management system that satisfies the
requirements of a data center. Ultimately, we strive to support both technical and enterprise workloads in a single
environment. To these ends, we use grid services as the principal method of interfacing with our users. Our grid
service interface for reservation, and discussion of our experience with grid services is provided in the next two
sections.

2. Grid Services for Reservation
We consider reservation of resources to be a mutual discovery and negotiation process between a user and a
resource management system. By “mutual discovery” we mean that during the interaction, both the user and the
resource manager will learn what the other is seeking and what it has available. By “negotiation” we mean that
these interactions will often be in multiple rounds, and that we wish to maintain some context between the parties
so that we can track the progress toward a reservation. We also have two important modes of operation that we
must support. First, it must be possible for a single user to coordinate reservations across multiple resource
management systems. This permits co-scheduling or co-reservation when a single application requires resources
spread across distinct management domains. Second, it must be possible to introduce brokers into the environment.
A broker is a third party that is located between a user and the resource manager. It may provide additional
services such as searching across multiple domains or using its own identity or priority on behalf of the user.

2.1 Our Initial Interface
Our initial service interface is described in [1], and is heavily influenced by SNAP [2]. The interface consists of
two methods: request and reserve. The user provides the request method with a full description for the
reservation including the resource types and time intervals when the reservation was to be valid. The resource
management system can provide either a negative or positive reply. A negative reply indicates that the request
could not be satisfied and may contain an alternative set of reservation parameters, based on those originally
provided, that suggest an acceptable configuration. A positive reply indicates that a reservation is possible, but it
may also contain updated parameter values that differ from those originally provided. The positive reply also
contains an identifier and a time-out value. If the user wishes to make the reservation, it must complete the second
phase of the protocol by calling the reserve method with the identifier prior to the time-out expiring. This second
phase is what allows us to satisfy the requirements for coordinating reservations across multiple domains and
permits a broker to inspect multiple sites on behalf of a single user request.

The basic structure of this interface is simple, containing only two methods, but it is unsatisfactory for two reasons.
First, it does not truly utilize the power of grid services. We find ourselves re-inventing patterns that the grid
service infrastructure could be providing for us. Most notably, we use identifiers to name the reservations when it
would have been more consistent with the grid service model to use a factory pattern. Second, the request method
signature is complex because all of the parameters for the reservation must be provided on every call. We, as
others, also realized that we were creating a use-specific interface for a general pattern: negotiation. WS-
Agreement1 provides this general pattern, so this is the approach we are currently taking, and describe in detail
below.

2.2 WS-Agreement Overview
WS-Agreement [4] is presently a draft specification for a general-purpose negotiation approach to service
management. The term negotiation here has much the same meaning as above. It involves an iterative approach to
reaching a desired state for the two parties. For the purposes of this discussion, it is important to understand two
structures defined by WS-Agreement: the term type and the agreement type. For a more complete description of
WS-Agreement, we refer you to the specification [4].

1 WS-Agreement has been known as OGSI-Agreement. The name has been changed to better reflect its applicability to web
services in general and is not specific to a grid context even though it does build on other specifications defined in the Global
Grid Forum (GGF).

The term type (called gsa:TermType in the specification) represents one value or condition that the parties agree
upon. The structure and content of the term are not specified by WS-Agreement. It is up to individual services that
use WS-Agreement to define content of these terms that is specific to their domain. What is specified is a model of
term states and how they interact to define the state of the agreement and what future actions can be performed on
the term. The first type of state deals with the current commitment level for the term. This can take on the values
Required, Optional, Observed, and Ignored. These names, and to some extent their meaning, are taken from the
WS-Policy [5] specification. Required indicates that the parties must come to an agreement on a value for this
term, but have not yet done so. Optional means that an overall agreement can be reached even if no agreement is
made on this term. Observed means that both parties have committed to the current value of the term and will
operate in an agreement based on it. Finally, Ignored means that this term has no meaning or control for the final
agreement. The other sort of state is the negotiability of the term either Negotiable or Fixed. A term that is fixed
cannot have its value changed. A Negotiable term’s value may change over time as the result of on-going
negotiation, even if the agreement as a whole has been put into effect.

The agreement type (named gsa:AgreementType in the specification) defines the contents of the agreement.
Conceptually, it defines a collection of terms and the relationship among these terms. For example, an agreement
could require all terms to be decided upon (that is, move to the Observed state), or it may provide an alternative
between some sub-sets of the terms that must become Observed. This facility is inherited from WS-Policy which
provides methods for grouping sub-terms and making assertions about their joint state such as exactly-one, all, or
one or more of the terms must be satisfied. For the purpose of WS-Agreement, satisfaction means an agreed upon
value for a term in the Observed state.

Agreements are created, and their lifetime managed as other grid services. A factory is used to create the
agreement, and the parameter to the service creation is the agreement type. A new grid service, representing the
agreement, is created when the factory determines that the provided terms are sufficient to begin negotiation.
Alternatively, an exception is returned if the terms are not understood or have unacceptable initial values or states.
The service representing the agreement has a lifetime managed as other grid services, using the termination time
soft state management. This allows for the multi-site negotiation and brokering as in our previous protocol. Initial
termination times will usually be set to a small value during which negotiation will take place, then extended to
represent the commitment to continue operation under the agreement.

2.3 Resource Reservation via WS-Agreement
While WS-Agreement provides the framework and the structure for performing negotiation, it requires terms to be
defined that are specific to the domain. We have created terms that satisfy our needs for reservation of resources in
a data center. These definitions are currently being used in the Quartermaster prototype. Consistent with the
definitions from WS-Agreement, each of these terms extends the gsa:TermType base type.

2.3.1 Start and End Time
The terms for start and end time for the reservation are defined as follows:
<xsd:complexType name="ReservationStartTimeTerm">
 <xsd:complexContent>
 <xsd:extension base="gsa:TermType">
 <xsd:sequence>
 <xsd:element name="startTime" type="xsd:dateTime"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="ReservationEndTimeTerm">
 <xsd:complexContent>
 <xsd:extension base="gsa:TermType">
 <xsd:sequence>
 <xsd:element name="endTime" type="ogsi:ExtendedDateTimeType"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

Both start and end times for the reservation are specified. This provides exact information about the duration of the
reservation distinct from the agreement thus permitting the agreement to be created well before the beginning of the
actual reservation. We use the ogsi:ExtendedDateTimeType for the end time which permits us to specify an
infinite end time for reservations that are meant to be permanent or at least of duration that is longer than we can
specify at this time.

2.3.2 Resource Description
The types and configurations of resources requested are described using the following type and term:
<xsd:complexType name="ResourceType">
 <xsd:attribute name="type" type="xsd:anyURI" use="required"/>
 <xsd:sequence>
 <xsd:any namespace="##any" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
</xsd:complexType>

<xsd:complexType name="ResourceDescriptionTerm">
 <xsd:complexContent>
 <xsd:extension base="gsa:TermType">
 <xsd:sequence>
 <xsd:element name="resource" type="ns:ResourceType"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>
For data center resources, we often encounter complex topologies of resources containing a variety of basic
resource types (e.g. compute servers, virtual LANS, storage arrays, firewalls, etc.). Our specification for these
resources is a complex language in its own right, and is not presently defined in a XML Schema compatible
manner. For this reason, we refer to the description by reference using the xsd:anyURI type and allow it to be
further refined or parameterized in this use with the sequence of any attributes. This structure may change if our
resource description language migrates to the XSD type system.

2.3.3 Recurrence
As noted previously, in our environment we frequently see regular patterns of resource demand. We therefore
define a structure for specifying a pattern for repetition in demand. We call this pattern a recurrence. The
recurrence works in conjunction with specific demand intervals, defined in Section 2.3.4, to create a pattern for
demand over time. The recurrence defines the base time to which the following intervals are relative. The defined
recurrence types and their corresponding term definition are:
<xsd:simpleType name="RecurrenceType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="NONE"/>
 <xsd:enumeration value="PERIODIC"/>
 <xsd:enumeration value="HOURLY"/>
 <xsd:enumeration value="DAILY"/>
 <xsd:enumeration value="WEEKLY"/>
 <xsd:enumeration value="MONTHLY"/>
 <xsd:enumeration value="YEARLY"/>
 </xsd:restriction>
</xsd:simpleType>
<xsd:complexType name="ReservationRecurrenceTerm">
 <xsd:complexContent>
 <xsd:extension base="gsa:TermType">
 <xsd:sequence>
 <xsd:element name="recurrence" type="ns:RecurrenceType"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>
The RecurrenceType defines the type of pattern of recurrence that we have observed. The value NONE implies
that there will be no recurrence to the demand. The PERIODIC value indicates that there will be a repetition, but it
will be relative to the intervals defined in the following terms, not to any intervals based on clock or calendar time.

Finally, we define a set of regular recurrence patterns based on time intervals ranging from HOURLY to YEARLY.
The ReservationRecurrenceTerm simply provides a single RecurrenceType for the reservation agreement.

2.3.4 Intervals and Demand
The final component of our reservation is the specific times and resource demands at those times. We specify these
as a tuple containing one point in time and a resource quantity requested at that particular time. The quantity
portion of that tuple is defined as follows:
<xsd:complexType name="QuantityType" abstract=”true”>
 <xsd:attribute name="units" type="xsd:string"/>
</xsd:complexType>
<xsd:complexType name="ProbabilityMassFunctionQuantityType">
 <xsd:complexContent>
 <xsd:extension base="ns:QuantityType">
 <xsd:sequence>
 <xsd:element name="tuple" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:attribute name="value" type="xsd:float" use="required"/>
 <xsd:attribute name="prob" type="xsd:float" use="required"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>
A quantity has a unit and also some numerical value as specified by a sub-type of the abstract base quantity type.
We have defined a number of quantity sub-types including a constant, a range of values, or various statistical
distributions. The most interesting and powerful quantity sub-type is the ProbabilityMassFunction (PMF) which we
show here. The PMF is used to specify a non-deterministic resource quantity. Its use is described in more detail in
[3], but the basis for this use is that while we may observe patterns of usage, the pattern may not be absolute. There
may be some variance, and we specify this variance as a set of possible values and their associated probability. It is
understood that the sum of these probabilities must be one. Quartermaster’s data structures and algorithms for
reserving resources work with PMFs, and therefore each reservation is actually a probabilistic reservation.

A resource quantity is bound to a point in time with the following type definition and its associated term definition:
<xsd:complexType name="QuantityIntervalTuple">
 <xsd:sequence>
 <xsd:element name="quantity" type="rm:QuantityType"/>
 <xsd:element name="intervalStart" type="xsd:duration"/>
 </xsd:sequence>
</xsd:complexType>
<xsd:complexType name="ReservationIntervalsTerm">
 <xsd:complexContent>
 <xsd:extension base="gsa:TermType">
 <xsd:sequence>
 <xsd:element name="intervals" type="ns:QuantityIntervalTuple" minOccurs="1"
maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>
Each interval is defined by its start time and the quantity of resources required during that interval. The start time is
specified using the xsd:duration type. This essentially provides a time offset which is relative to both the beginning
of the reservation and the beginning of the recurrence type. So, for example, a start time of zero, with a recurrence
type of HOURLY would be setting the resource level at the beginning of every hour starting at the first hour
boundary after the reservation’s start time. An interval start time that is greater than the recurrence length is simply
ignored. Any number of interval-quantity pairs can be specified in the term. If the PERIODIC recurrence type is
used, the last of these pairs must have a quantity equal to zero specifying the end of the period.

Finally, a complete reservation request takes one term of each of the types defined previously as follows:
 <xsd:complexType name="ResourceReservationType">
 <xsd:complexContent>
 <xsd:extension base="gsa:AgreementType">

 <xsd:sequence>
 <xsd:element name="resourceTerm" type="ns:ResourceDescriptionTerm"/>
 <xsd:element name="startTimeTerm" type="ns:ReservationStartTimeTerm"/>
 <xsd:element name="endTimeTerm" type="ns:ReservationEndTimeTerm"/>
 <xsd:element name="recurrenceTerm" type="ns:ReservationRecurrenceTerm"/>
 <xsd:element name="intervalsTerm" type="ns:ReservationIntervalsTerm"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
We do not, at present, provide any preference or alternative options in the reservation. It must specify exactly one
term of each of the types. Usually, the simple case is easily defined. For example, a simple reservation for a
constant number of resources from a start time to an end time would contain the resource description, the start and
end times, a recurrence type of none, and an intervals term containing a single pair with the quantity (using the
constant quantity sub-type which is not shown here) and an interval start-time of zero.

3. Reflections and Expectations
Our use of grid services is both consistent with and different from what we’ve commonly seen in other resource
management systems. The data center is a diverse and complex environment in terms of the resources available
and the applications than run there. It is clear, however, that grid services are helping us to meet this challenge. In
particular, even the early development of WS-Agreement which itself builds heavily on grid services, has been an
advantage as it addresses exactly the sort of problem that we face with regard to negotiation of reservations.
Negotiation is a powerful, but also uncommon approach whose usability has not yet been proved. It may be that
additional tooling will be needed to make it tractable. We will continue to be active in the development of WS-
Agreement and expect that our reservation service will both evolve with it, and continue to exploit more of its
features.

One of the challenges we presently face is determining how best to expose the resources Quartermaster manages.
Just as we allow requests to specify constructions of resources, we wish to expose useful constructions. It is clear
that this is a match for service data elements defined by grid services, but we have not yet defined a schema for
exposing the environment in this manner. Also, while the authentication mechanisms provided seem to be key, we
have not yet explored them in practice. We anticipate this being key both operationally to make the system more
palatable to operators as well as a basis for policies involving priorities among users.

Ultimately, we hope that resource reservation will continue to be an area of standardization and collaboration based
on grid services. The ideal situation is that a single service definition for reservation can be used in a variety of
computing and application environments as well as support the needs of those that must coordinate resources across
multiple domains or via intermediaries such as brokers.

References
[1] Rolia J., Pruyne J., Zhu X. and Arlitt M., “Grids for Enterprise Applications,” in Proceedings of the 9th

workshop on Job Scheduling Strategies for Parallel Programs. Seattle, June 2003.

[2] Czajkowski K., Foster I., Kesselman C., Sander V., Tuecke S., “SNAP: A Protocol for Negotiating Service
Level Agreements and Coordinating Resource Management in Distributed Systems,” in Proceedings of
the 8th workshop on Job Scheduling Strategies for Parallel Programs, 2002, LNCS vol. 2357, pp. 153-183.

[3] Rolia J., Zhu X., and Arlitt M.: “Resource Access Management for a Resource Utility for Enterprise
Applications,” in Proceedings of the International Symposium on Integrated Management (IM 2003),
March, 2003, pp. 549-562, Colorado Springs, Colorado, USA.

[4] Czajkowski K., Dan A., Rofrano J., Tuecke S. and Xu M., “Agreement Based Grid Service Management
(OGSI-Agreement),” URL: https://forge.gridforum.org/projects/graap-wg/document/Draft_OGSI-
Agreement_Specification/en/1/Draft_OGSI-Agreement_Specification.doc

[5] Box et. al., “Web Services Policy Framework (WSPolicy),” URL: http://www-
106.ibm.com/developerworks/library/ws-polfram/

